Hello,
I'm running a dark energy model with a dynamical equation of state (already tested). However, by INCLUDING Planck 2018 likelihoods I find different values of chi-square with action =4 vs action = 2. When I run action=4 in CosmoMC, the values of the chi-square are the following:
loglike chi-sq
995.932 1991.864 CMB: plik = plik_rd12_HM_v22_TT
18.357 36.714 CMB: lowl = commander_dx12_v3_2_29
255.991 511.981 SN: JLA PantheonPlus
0.004 0.008 BAO: DR1BGSbao
4.461 8.922 BAO: DR1LRGbao
1.169 2.337 BAO: DR1LRG_ELGbao
0.135 0.271 BAO: DR1ELGbao
0.079 0.157 BAO: DR1QSRbao
0.497 0.994 BAO: DR1LYAbao
On the other hand, finding the best-fit values with action=2 in CosmoMC, the values of the chi-square are:
483.434 966.869 CMB: plik = plik_rd12_HM_v22_TT
21.284 42.567 CMB: lowl = commander_dx12_v3_2_29
255.772 511.544 SN: JLA PantheonPlus
1.621 3.241 BAO: DR1BGSbao
15.384 30.767 BAO: DR1LRGbao
1.719 3.439 BAO: DR1LRG_ELGbao
1.644 3.288 BAO: DR1ELGbao
0.094 0.189 BAO: DR1QSRbao
1.103 2.206 BAO: DR1LYAbao
In our .ini file, the parameters vary with reasonable bounds:
param[tau] = 0.058 0.01 0.8 0.01 0.005
param[omegabh2] = 0.0225 0.005 0.1 0.0001 0.0001
param[omegach2] =0.116 0.001 0.99 0.001 0.0005
param[theta]= 1.0411 0.5 2 0.0004 0.0004
param[calPlanck]= 0.9999 0.9 1.1 0.002 0.0005
param[acib217] = 64 0 200 10 1.2
param[xi] = 0.2576 0 1 0.1 0.1
param[asz143]= 0.6973563E+01 0 10 2 0.6
param[aps100] = 0.2506704E+03 0 400 24 17
param[aps143] = 0.4360550E+02 0 400 10 3
param[aps143217] = 0.4136439E+02 0 400 12 2
param[aps217] = 0.1022745E+03 0 400 13 2.5
param[aksz] = 0.2921053E-03 0 10 3 1
param[kgal100] = 8.99 0 50 2 1
param[kgal143] = 10.71 0 50 2 1
param[kgal143217] = 17.80 0 100 4 1.5
param[kgal217] = 82.25 0 400 15 2
param[cal0] = 0.997 0 3 0.001 0.0005
param[cal2] = 0.995 0 3 0.002 0.001
As you can see, the chi-square of BAO and CMB shows a discrepancy running action=4 in comparison with running=2.
I hope you can give me some hint or a possible solution to solve this issue. This occurs when Planck 2018 likelihoods are taken into account.
I'm looking forward to your kind help,
Best regards,
Jose Lozano
I'm running a dark energy model with a dynamical equation of state (already tested). However, by INCLUDING Planck 2018 likelihoods I find different values of chi-square with action =4 vs action = 2. When I run action=4 in CosmoMC, the values of the chi-square are the following:
loglike chi-sq
995.932 1991.864 CMB: plik = plik_rd12_HM_v22_TT
18.357 36.714 CMB: lowl = commander_dx12_v3_2_29
255.991 511.981 SN: JLA PantheonPlus
0.004 0.008 BAO: DR1BGSbao
4.461 8.922 BAO: DR1LRGbao
1.169 2.337 BAO: DR1LRG_ELGbao
0.135 0.271 BAO: DR1ELGbao
0.079 0.157 BAO: DR1QSRbao
0.497 0.994 BAO: DR1LYAbao
On the other hand, finding the best-fit values with action=2 in CosmoMC, the values of the chi-square are:
483.434 966.869 CMB: plik = plik_rd12_HM_v22_TT
21.284 42.567 CMB: lowl = commander_dx12_v3_2_29
255.772 511.544 SN: JLA PantheonPlus
1.621 3.241 BAO: DR1BGSbao
15.384 30.767 BAO: DR1LRGbao
1.719 3.439 BAO: DR1LRG_ELGbao
1.644 3.288 BAO: DR1ELGbao
0.094 0.189 BAO: DR1QSRbao
1.103 2.206 BAO: DR1LYAbao
In our .ini file, the parameters vary with reasonable bounds:
param[tau] = 0.058 0.01 0.8 0.01 0.005
param[omegabh2] = 0.0225 0.005 0.1 0.0001 0.0001
param[omegach2] =0.116 0.001 0.99 0.001 0.0005
param[theta]= 1.0411 0.5 2 0.0004 0.0004
param[calPlanck]= 0.9999 0.9 1.1 0.002 0.0005
param[acib217] = 64 0 200 10 1.2
param[xi] = 0.2576 0 1 0.1 0.1
param[asz143]= 0.6973563E+01 0 10 2 0.6
param[aps100] = 0.2506704E+03 0 400 24 17
param[aps143] = 0.4360550E+02 0 400 10 3
param[aps143217] = 0.4136439E+02 0 400 12 2
param[aps217] = 0.1022745E+03 0 400 13 2.5
param[aksz] = 0.2921053E-03 0 10 3 1
param[kgal100] = 8.99 0 50 2 1
param[kgal143] = 10.71 0 50 2 1
param[kgal143217] = 17.80 0 100 4 1.5
param[kgal217] = 82.25 0 400 15 2
param[cal0] = 0.997 0 3 0.001 0.0005
param[cal2] = 0.995 0 3 0.002 0.001
As you can see, the chi-square of BAO and CMB shows a discrepancy running action=4 in comparison with running=2.
I hope you can give me some hint or a possible solution to solve this issue. This occurs when Planck 2018 likelihoods are taken into account.
I'm looking forward to your kind help,
Best regards,
Jose Lozano
Statistics: Posted by Jose Lozano — May 07 2024